∫ (ax + b)n dx = | 1 | (ax + b)n+1 | + c if n ≠ -1 |
a | n + 1 |
∫ | 1 | dx = | 1 | ln | ax + b | | + c |
ax + b | a |
∫ eax+b dx = | eax+b | + c |
_____ | ||
a |
∫ sin (ax+b) dx = | -cos (ax+b) | + c |
a | ||
∫ cos (ax+b) dx = | sin (ax+b) | + c |
a |
∫ tan x dx | = ln | sec x | + c |
∫ cot x dx | = ln | sin x | + c |
∫ sec x dx | = ln | sec x + tan x | + c |
∫ cosec x dx | = - ln | cosec x + cot x | + c |
∫ sin2 x dx = | 1 | ∫ 1 - cos 2x dx |
2 | ||
∫ cos2 x dx = | 1 | ∫ 1 + cos 2x dx |
2 |
∫ sec2 x dx | = tan x + c |
∫ cosec2 x dx | = -cot x + c |
∫ tan2 x dx | = ∫ sec2 x - 1 dx |
∫ cot2 x dx | = ∫ cosec2 x - 1 dx |
∫ ax dx = | ax | + c |
___ | ||
ln a |
∫ | 1 | dx = | sin-1 | x | + c | |
√(a2 - x2) | a | |||||
∫ | 1 | dx = | 1 | tan-1 | x | + c |
a2 + x2 | a | a |